Fast Migration of Fluoride Ions in Growing Anodic Titanium Oxide

نویسندگان

  • H. Habazaki
  • K. Fushimi
  • K. Shimizu
  • P. Skeldon
  • G. E. Thompson
چکیده

The rapid inward migration of fluoride ions in growing anodic titanium oxide under a high electric field has been elucidated by anodizing a Ti-12 at% silicon alloy, where film growth proceeds at nearly 100% efficiency in selected electrolytes. Further, incorporated silicon species in the anodic film are immobile, acting as marker species. The migration rate of fluoride ions is determined precisely by three-stage anodizing, consisting of initial anodic film formation at a constant current density to 50 V in ammonium pentaborate electrolyte, subsequent incorporation of fluoride ions by reanodizing to 55 V in ammonium fluoride electrolyte and, finally, anodizing again in ammonium pentaborate electrolyte at high current efficiency. The resultant films were analyzed by glow discharge optical emission spectroscopy to reveal the depth distribution of fluoride ions and the location of the silicon marker species. The fluoride ions migrate inward at twice the rate of O ions. Consequently, anodizing of titanium in fluoride-containing electrolytes develops a fluoride-rich layer that separates the alloy substrate from the anodic oxide, with eventual detachment of the film from the substrate. Keywords; anodic film, titanium, ionic transport, fluoride ions, GDOES

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of anodic oxide film formation on zircaloy-2, zircaloy-4, titanium and niobium (Radio tracer technique)

The kinetics of anodic oxidation of zircaloy-2, zircaloy-4, titanium and niobium have been studied in 0.1M sodium methoxide without and with addition of a millimole of sodium phosphate at a constant current density of 8mA.cm-2 and at room temperature (300 K). the addition of phosphate ions found to improve the kinetics of film formation. This trend and mechanism of anodic oxide film growth is c...

متن کامل

EFFECT OF ANODIC OXIDATION ON THE CORROSION BEHAVIOR OF NICKEL-TITANIUM SHAPE MEMORY ALLOYS IN SIMULATED BODY FLUIDS (SBF)

The effect of anodic oxidation of a NiTi shape memory alloy in sulfuric acid electrolyte on its surface characteristics was studied. Surface roughness was measured by roughness tester. Surface morphology was studied using optical microscopy (OM) and scanning electron microscopy (SEM). Corrosion behavior was specified by recording Potentiodynamic polarization cur...

متن کامل

Effects of nanoporous anodic titanium oxide on human adipose derived stem cells

The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanop...

متن کامل

Electrophoretic Synthesis of Titanium Oxide Nanotubes

In the current research project, sol-gel electrophoresis technique was utilized to grow titanium dioxide (TiO2) nanotubes. A titanium sol was prepared using organometallic precursors of titanium to fill the template channels. The prepared solwas driven into nanopores of porous anodic aluminum oxide templates under the influence of a DC electric field to form nanotubes on the pore walls. Tube fo...

متن کامل

Evaluation of Electrical Breakdown of Anodic Films on Titanium in Phosphate-base Solutions

Titanium is a highly reactive metal so that a thin layer of oxide forms on its surface whenever exposed to the air or other environments containing oxygen. This layer increases the corrosion resistance of titanium. The oxide film is electrochemically formed through anodizing. In this study, anodizing of titanium was performed in phosphate-base solutions such as H3Po4, NaH2Po4, and Na2Hpo4 at 9....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017